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Conformal Quantum Effects and the Anisotropic
Singularities of Scalar-Tensor Theories of Gravity

E. Gunzig1 and Alberto Saa2,3

We show that the inclusion of a term Cabcd Cabcd in the action can remove the recently
described anisotropic singularity occurring on the hypersurface F(φ) = 0 of scalar-
tensor theories of gravity of the type

S =
∫

d4x
√−g{F(φ)R − ∂aφ∂aφ − 2V (φ)},

preserving, by construction, all of their isotropic solutions. We show that, in principle,
a higher order term of this type can arise from considerations about the renormaliz-
ability of the semiclassical approach to the theory. Such result brings again into con-
sideration the quintessential models recently proposed based in a conformally coupled
scalar field (F(φ2) = 1 − 1

6 φ2) with potential V (φ) = m
2 φ2 − �

4 φ4, that have been
discharged as unrealistic precisely by their anisotropic instabilities on the hypersurface
F(φ) = 0.
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1. INTRODUCTION

In Gunzig et al. (2001a,b), was proposed a quintessential model correspond-
ing to the homogeneous and isotropic solutions of the cosmological model de-
scribed by the action:

S =
∫

d4x
√−g{F(φ)R − ∂aφ∂aφ − 2V (φ)}, (1)

with F(φ) = 1 − 1
6φ2, the so-called conformal coupling, and V (φ) = m

2 φ2 − �
4 φ4.

Some novel and interesting dynamical behaviors were identified: superinflation
regimes, a possible avoidance of big-bang sigularities through classical birth
of the universe from empty Minkowski space, spontaneous entry into and exit
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from inflation, and a cosmological history suitable for describing quintessence.
The next natural step was (Abramo et al., 2003a,b) the analysis of the robustness
of these results against small perturbations in initial conditions and in the model
itself. By considering general coupling F(φ) models as in Esposito-Farese and
Polarski (2001), we generalize previous results (Bertolami, 1987; Deser, 1984;
Futamase et al., 1981; Futamase and Maeda, 1989; Hosotani, 1949; Starobinski,
1981) and identify two kinds of dynamically unavoidable singularities in the
models described by (1).

The first one appears only in the anisotropic case and corresponds to the hy-
persurfaces F(φ) = 0. It is a direct generalization of the Starobinski singularities
of conformally coupled anisotropic solution (Starobinski, 1981). It implies that the
homogeneous and isotropic solutions passing from the F(φ) > 0 to the F(φ) < 0
region in the model described in Gunzig et al. (2001a,b) are extermely unsta-
ble against anisotropic perturbations, challenging its proposal as a quintessential
model. The second type of singularity corresponds to F1(φ) = 0, with

F1(φ) = F(φ) + 3

2
(F ′(φ))2, (2)

and it is present even for the homogeneous and isotropic cases. Futamase and
coworkers (Futamese et al., 1981; Futamese and Maeda, 1989) identified both
singularities in the context of chaotic inflation in F(φ) = 1 − ξφ2 theories (See
also Bertolami, 1987; Deser, 1984; Hosotani, 1985). The first singularity is always
present for ξ > 0 and the second one for 0 < ξ < 1/6. The conclusions of Abramo
et al. (2003a,b) are, however, more general since we treat the case of general F(φ)
and V (φ) and our results are based on the analysis of true geometrical invariants.
The main result is that the system governed by (1) is generically singular on both
hypersurfaces F(φ) = 0 and F1(φ) = 0.

The anisotropic singularity occurring on F(φ) = 0 was the major obstacle
in developing the model proposed in Gunzig et al. (2001a,b). Note that singular-
ities of the second type are absent in the conformally coupled case. Although the
isotropic solutions are always regular on the hypersurface F(φ) = 0, any small
deviation of isotropy will have catastrophic consequences, leading to a space-
time singularity in a finite time. Even a very small amount of anisotropy will be
hugely amplified, feeding the energy content of the scalar field φ and increas-
ing the space-time curvature toward a true singularity. Our purpose here is to
show that the inclusion of the higher order term CabcdCabcd can eliminate this
anisotropic singularity preserving, by construction, all isotropic solutions. More-
over, we will see that a quantum counterterm precisely of this form can arise from
considerations about the renormalizability of the semiclassical theory described
by (1).

The next section presents a brief review of the geometric nature of the
anisotropic singularity. Section 3 discusses the possible appearance of the
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conformal counterterm CabcdCabcd. Its dynamical implications are presented in
Section 4. The last section presents some concluding remarks.

2. THE SINGULARITY

The equations derived from the action (1) are the Klein-Gordon equation

�φ − V ′(φ) + 1

2
F ′(φ)R = 0, (3)

and the Einstein equations

F(φ)Gab = (1 + F ′′(φ))∂aφ∂bφ − 1

2
gab[(1 + 2F ′′(φ))∂cφ∂cφ + 2V (φ)]

− F ′(φ)(gab�φ − ∇aφ∇bφ). (4)

We considered the simplest anisotropic homogeneous cosmological model, the
Bianchi type I, whose spatially flat metric is given by

ds2 = −dt2 + a2
1(t)dx2 + a2

2(t)dy2 + a2
3(t)dz2. (5)

The dynamically relevant quantities here are Hi = ȧi/a, i = 1, 2, 3. For such a
metric and a homogeneous scalar field φ = φ(t) Eq. (4) can be written as

F(φ)G00 = 1

2
φ̇2 + V (φ) − F ′(φ)(H1 + H2 + H3)φ̇, (6)

1

a2
1

F(φ)G11 = 1 + 2F ′′(φ)

2
φ̇2 − V (φ) − F ′(φ)

(
H1φ̇ + V ′(φ) − F ′(φ)

2
R

)
,

(7)

1

a2
2

F(φ)G22 = 1 + 2F ′′(φ)

2
φ̇2 − V (φ) − F ′(φ)

(
H2φ̇ + V ′(φ) − F ′(φ)

2
R

)
,

(8)

1

a2
3

F(φ)G33 = 1 + 2F ′′(φ)

2
φ̇2 − V (φ) − F ′(φ)

(
H3φ̇ + V ′(φ) − F ′(φ)

2
R

)
.

(9)

It is quite simple to show that Eqs. (7)–(9) are not compatible, in general, on
the hypersurface F(φ) = 0. Subtracting (8) and (9) from (7) we have, on such
hypersurface, respectively,

F ′(φ)(H1 − H2)φ̇ = 0, and F ′(φ)(H1 − H3)φ̇ = 0. (10)

Hence, they cannot be fulfilled in general for anisotropic metrics. This is
the origin of the anisotropic singularity. Using the new dynamical variables
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p = H1 + H2 + H3, q = H1 − H2, and r = H1 − H3, Einstein Equations can be
cast in the form

E(φ , φ̇, p, q , r ) = −1

3
F(φ)(p2 + qr − q2 − r2) + φ̇2

2

+ V (φ) − pF ′(φ)φ̇ = 0, (11)

q̇ = −
(

p + F ′(φ)

F(φ)
φ̇

)
q, (12)

ṙ = −
(

p + F ′(φ)

F(φ)
φ̇

)
r, (13)

−2F1(φ) ṗ = (F(φ) + 2F ′(φ)2)p2 + 3

2
(1 + 2F ′′(φ))φ̇2 − 3V (φ)

− 3F ′(φ)V ′(φ) − pφ̇F ′(φ) + (F(φ) + F ′(φ)2)(q2 + p2−qr )

(14)

A closer analysis of Eqs. (12)–(13) reveals the presence of the singularity. In gen-
eral, the right-hand side of these equations deverge for F(φ) = 0. One can check
that this divergence is indeed related to real geometrical singularity by considering
the Kretschman scalar I = Rabcd Rabcd (Abramo et al., 2003a,b). Furthermore, it is
dynamically unavoidable since the hypersurface F(φ) = 0 has always an attractive
side.

3. RENORMALIZATION AND QUANTUM COUNTERTERMS

The idea of incorporating vacuum semiclassical effects into gravity has a long
history, and a good set of references is presented in Birrel and Davies (1982) and
Buchbinder et al. (1992). Zeldovich was the first to propose (Zeldovich, 1967), in
1967, that a cosmological constant term could arise from quantum considerations of
matter. Yet in the sixties, in a set of seminal works, Parker considered (Parker, 1968,
1969, 1971) the effect of the creation of particles in an expanding universe, and
discussed the possible backreaction, opening the discussion of anisotropy damping
and avoidance of the initial singularity due to quantum corrections (Fischetti et al.,
1979; Hartle and Hu, 1979, 1980; Hu and Parker, 1978a,b).

A semiclassical treatment of the model described by (1) with F(φ) = 1 − ξφ2

and V (φ) = m
2 φ2 − �

4 φ4, where, hereafter, by semiclassical one means that φ is
quantized on a classical gravitational background, requires the inclusion of higher
order counterterms to ensure the renormalization of the theory. These terms are
(Birrel and Davies, 1982; Buchbinder et al., 1992)

Svac

∫
d4x

√−g(α1 R2 + α2 Rab Rab + α3 Rabcd Rabcd + α4�R). (15)
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The quantum divergences of the semiclassical theory can be removed by the renor-
malization of the constants α1,2,3,4 and the Newtonian constant G. In fact, the full
set of quantities affected by the renormalization include the matter field, its mass
m and selfcoupling constant �, the nonminimal coupling constant ξ , and yet a cos-
mological constant. All these quantities are, in principle, subject to some quantum
running, and indeed some models to describe the reacceleration of the universe
have been recently proposed based on vacuum quantum effects (Parker and Raval,
1999a,b, 2000, 2001, 2003a,b,c; Parker and Vanzella, 2003; Shapiro et al., 2003;
Shapiro and Sola, 2002).

The last counterterm in (15) does not contribute to the classical dynamics,
since it is merely a total divergence. In four dimensions, we have

CabcdCabcd = Rabcd Rabcd − 2Rab Rab + 1

3
R2. (16)

Hence, it is possible, in principle, to combine α1, α2, and α3 in order to have the
desired counterterm. We leave the issue of the naturalness of this finely tunned
choice to the last section. The Weyl tensor Cabcd vanishes identically for isotropic
spacetimes, and hence any contribution from this counterterm would affect only
the anisotropic case by construction, preserving all isotropic solutions. The task
of calculating the varitions of the conformal counterterm CabcdCabcd with respect
to the metric is simplified if one recalls that in four dimensions the Gauss-Bonnet
term

E = Rabcd Rabcd + R2 − Rab Rab (17)

has identically vanishing Euler-Lagrange equations and, hence, does not contribute
to the classical dynamics too, implying that the confromal counterterm is dynam-
ically equivalent to the term Rabcd Rabcd/2 − R2/6. Thus, with the inclusion of
the conformal counterterm in the model proposed in Gunzig et al. (2001a,b), the
resulting dynamics are governed by the action

S =
∫

d4x
√−g

{(
1 − 1

6
φ2

)
R + α

(
1

2
Rabcd Rabcd − 1

6
R2

)

− ∂aφ∂aφ − 2V (φ)

}
, (18)

Where V (φ) = m
2 φ2 − �

4 φ4 and α is a parameter typically small when compared
to 1/G.

4. THE DYNAMICS

We study here the dynamics governed by the action (18). The Klein-Gordon
equation (3) is not affected by the new term. It is clear, however, that new higher
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order terms will appear in the left hand side of Einstein equations (6)–(9). The new
terms come from the tensors

Qab = 1√−g

δ

δgab

∫
d4x

√−gRabcd Rabcd (19)

and

Sab = 1√−g

δ

δgab

∫
d4x

√−gR2. (20)

We calculate the tensor Qab, Sab, and Gab by recalling that for the metric (5) one
has

R = 2
(
Ḣ1 + Ḣ2 + Ḣ3 + H 2

1 + H 2
2 + H 2

3 + H1 H2 + H2 H3 + H1 H3
)

(21)

and

Rabcd Rabcd = 4
((

Ḣ1 + H 2
1

)2 + (
Ḣ2 + H 2

2

)2 + (
Ḣ3 + H 2

3

)2

+ H 2
1 H 2

2 + H 2
1 H 2

3 + H 2
2 H 2

3

)
. (22)

We have

1

a2
1

G11 = Ḣ2 + Ḣ3 + H 2
2 + H 2

3 + H2 H3 (23)

1

4a2
1

Q11 = 2
...
H1 + 4(H1 + H2 + H3)Ḧ1 + (

3Ḣ1 + 2Ḣ2 + 2Ḣ3 − 2H 2
1

+ 8H1 H3 + 8H1 H2 + 4H2 H3
)
Ḣ1 + (

Ḣ2 + 2H 2
1 +2H 2

2 − 4H1 H2
)
Ḣ2

+ (
Ḣ3 + 2H 2

1 + 2H 2
3 − 4H1 H3

)
Ḣ3 − H 4

1 + H 4
2 + H 4

3

+ H 2
1

(
H 2

2 + 4H2 H3 + H 2
3

) + H 2
2 H 2

3

− 2H1
(
H 3

2 + H 3
3 + H 2

2 H3 + H2 H 2
3

)
(24)

1

4a2
1

S11 = 2(
...
H1 + ...

H2 + ...
H3) + 4(H1 + H2 + H3)Ḧ1

+ 2(H1 + 3H2 + 2H3)Ḧ2 + 2(H1 + 2H2 + 3H3)Ḧ3

+ (
3Ḣ1 + 4(Ḣ2 + Ḣ3) − 2H 2

1 + 2(H2 + H3)2 + 2H1(H2 + H3)
)
Ḣ1

+ (
5Ḣ2 + 6H 2

2 + 4H 2
3 + 2H1(H2 + H3) + 8H2 H3

)
Ḣ2

+ (
5Ḣ3 + 4H 2

2 + 6H 2
3 + 2H1(H2 + H3) + 8H2 H3

)
Ḣ3 + 6Ḣ2 Ḣ3

− H 4
1 + H 4

2 + H 4
3 − 2(H2 + H3)H 3

1 + 2H 3
2 H3 + 2H2 H 3

3

+ 3H 2
2 H 2

3 − (H2 + H3)2 H 2
1 . (25)
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The other nonvanishing components 22 and 33 are obtained by index cyclic
permutations from the above ones. One can check that in the isotropic case
H1 = H2 = H3 = H , we have Q11 = Q22 = Q33 = 2

...
H + 12HḦ + 9(Ḣ +

2H 2)Ḣ , and S11 = S22 = S33 = 6
...
H + 36HḦ + 27(Ḣ + 2H 2)Ḣ , in such a way

that all the contributions from the higher order term cancel out in Einstein equa-
tions and we stay with the original equations of the model (Gunzig et al.,
2001a,b).

We notice that due to the term (22), we do not have anymore the first in-
tegral q/r = (H1 − H2)/(H2 − H3) = constant. This first integral was identified
in (Abramo et al., 2003a,b), and it is a consequence of the internal symmetry of
Hilbert-Einstein action for Bianchi I metric (5) described in Chimento (2003).
Contrary to the Kretschman scalar Rabcd Rabcd , the scalar curvature R is preserved
under linear combinations of Hi that preserve the quantities P = H1 + H2 + H3

and S = H 2
1 + H 2

2 + H 2
3 . The intersection of constant P and S corresponds to a

circumference in the Euclidean space of Hi , and its SO(2) symmetry is responsible
for the first integral (Saa, in preparation).

With the contribution from the tensors Qab and Sab, the singular equations
(12) and (13) are replaced by the regular ones

α(4
...
q + . . .) + F(φ)q̇ = (F(φ)p + F ′(φ)φ̇)q, (26)

α(4
...
r + . . .) + F(φ)ṙ = (F(φ)p + F ′(φ)φ̇)r. (27)

Both equations (26) and (27) are free from singularities on the surface F(φ) =
0. With the hypothesis of small α, the new terms are relevant only when F(φ)
vanishes. They assure a regular behavior of the solutions q(t) and r (t), eliminating
the singular behavior present in the original equations (26) and (27).

5. CONCLUSION

We have shown that the inclusion of the conformal counterterm CabcdCabcd in
the action (1) can eliminate the anistropic singularity corresponding to F(φ) = 0.
Such singularity is present in the recently proposed quintessential model (Gunzig
et al., 2001a,b), and it was its strongest objection. The conformal properties of the
Weyl tensor Cabcd ensure that all isotropic solutions of (1) are preserved when the
counterterm is included. Hence, all the interesting dynamical behavior described
in Gunzig et al. (2001a,b) is still valid, including a cosmological history suitable,
in principle, for describing quintessence.

A relevant issue is the naturalness of the necessary adjust in the constants α1,
α2, and α3 in order to have the conformal counterterm. As these constants may
arise from quantum corrections, the only reasonable hypothesis about them is that
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they must be small if compared with 1/G. This point is now under investigation
(Gunzig and Saa, in preparation), and preliminary results show that, under the only
hypothesis of small α1, α2, and α3, both singularities on F(φ) = 0 and F1(φ) = 0
can be eliminated preserving almost all of the isotropic behavior.
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